About me

I am a postdoctoral research associate in the Division of Applied Mathematics at Brown University. Starting on January 15, 2023, I will be an assistant professor/faculty fellow in the computer science department at the Courant Institute at New York University.

My research focuses on machine learning, optimization, imaging science, and partial differential equations. My Ph.D. dissertation, completed under the supervision of Prof. Jérôme Darbon, focused on developing efficient and robust optimization algorithms for large-scale supervised learning tasks (e.g., regression and classification in machine learning) and investigating connections between Hamilton–Jacobi PDEs and both machine learning and imaging science.

Prior to my doctoral studies, I completed my M.Sc. degree in applied mathematics in 2015 from ETH Zürich with Prof. George Haller as my M.Sc. thesis advisor. I completed my B.Sc. degree in applied mathematics and physics in 2013 from McGill University with Prof. Michael C. Mackey as my undergraduate honors thesis advisor.

Contact Information

Gabriel Provencher Langlois
Division of Applied Mathematics
Brown University
Box F
Room 207, 170 Hope Street
Providence, RI, 02906

Office phone number: 401-863-3694
Email: gabriel_provencher_langlois[at]brown[dot]edu

Google Scholar
ORCID